
WRDC-TR-90-8007
Volume VIII
Part 23

AD-A250 483ill i~ II 'II U~ II i iil III I

INTEGRATED INFORMATION SUPPORT SYSTEM (IISS)
Volume VIII - User Interface Subsystem
Part 23 - Rapid Application Generator and Report Writer
Development Specification

S. Barker

Control Data Corporation
Integration Technology Services | I C
2970 Presidential DriveFairborn, OH 45324-6209 DTA(K

Y a419.~

V
September 1990

Final Report for Period 1 April 1987 - 31 December 1990

Approved for Public Release; Distribution is Unlimited

MANUFACTURING TECHNOLOGY DIRECTORATE S -

WRIGHT RESLiRCH AND DEVELOPMENT CENTER _

AIR FORCE SYSTEMS COMMAND 1

WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6533

92 ~

NO'ICE

When Government drawings. specifications, or other data are used for any purpose other
than in connection with a definitely related Government procurement operation, the United
States Government thereby incurs no responsibility nor any obligation whatsoever, regardless
whether or not the government may have fonnulated, furnished, or in any way supplied the
said drawings, specifications, or other data. It should not, therefore, be construed or implied
by any person, persons, or organization that the Government is licensing or conveying any
rights or permission to manufacture, use, or market any patented invention that may in any way
be related thereto.

This technical report has been reviewed and is approved for publication.

This report is releasable to the National TechnicalInformation Service (NTIS). At NTIS, it will be
available to the general public, including foreign nations

t/

DA D L. JDS N, Pr ect Manager DATE

Wr~iht-Pat rs AFB, OH 45433-6533

FOR THE COMMANDER:

ii /."" /2

8RUCE A. RASMUSSEN, Chief DATE
WRDC/MTI
Wright-Patterson AFB, OH 45433-65,3

If your address has changed, if you '.% i -h to be removed form our mailing list, or if the
addressee is no longer employed by Vo,r ,-uanization please notify WRDC/MTI, Wrigzht-
Patterson Air Force Base, 011 45433-65, o help Lis maintain a current mailing list.

Copies of this report should not he rCurned unless return is required by security
considerations, contractual obligations. o)r ,otice on a specific document.

Unclassified

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPOR'
__ Approved for Public Release-,

2b. DEC LASSI FICATION/DOWNGRADING SCHEDULE Distribution is Unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

DS 620344501 WRDC/MTI-TR- 90-8007 Vol. ViII. Part 23

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Control Data Corporation; (if applicable) WRDC/MTI
Integration Technology Services I___________________________
6c. ADDRESS (CityState, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

2970 Presidential Drive
Fairborn, OH 45324-6209 WPAFB, OH 45433-6533

8a. NAME OF FUND ING/SPONSOR ING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMI
ORGANIZATION (if applicable)

Wright Research and Development Center, IF33600 87-C-0464
Air Force Systems Command, USAF WRDC/MTI 1.SUC FFNIGNS

8c. ADDRESS (City, State, and ZIP Code)
Wright- Patterson AFB, Ohio 45433-6533 PROGRAM PROJECT TASK WORK IJN!T

-- ELEMENT NO. NO. NO. NG.
11 TITLE See block 19 7801 IF 595600 F95600 205360.
Rapid Ap pmerit Spec.

2. PERSONAL AUTHOR(S)
Structural Dynamics Research Corporation: Barker, S. ,et al.

6. SUPPLEMENTARY Nu ,_,

WIRDC, MTI Project Priority 6203

7. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and ident "v bi'cck no)

FIELD GROUP SUB OR.

9. ABSTRACT (Continue on reverse if necessary and identify block number)

Tf!., pecixiation establishes the development, test. qualification, and performance require ments ot a com p..te.r
programn identified as the Rapid Application Generator (RAP).

R)' N F0':M AT ; 0N 0LPP0RFT 'YSTEM

VW o VI LI - ljr Intrface StiII)LY' tom

,irt. 23 - Rapid Application Generator and Report Writer IDeveioprvent
Speci fication

DS iBTO/VIAIIYOF ABSTRACT 1. ABSTRACT SECURIOY CLA.3SSIFQAT ON

.NCLASSIFIEDIUNLIMITED x SAME AS RPT. DTIC USERS Unclassified

.'a, NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NO. 2c ORQ 0 FF (7
(Include Area Code)

David L. Judson (513) 255-7371 V/RDC ,

EDITION OF 1 JAN 73 IS OBSOLETE
O D FORM 1473, 83 APR Unclasstfiud

SECURITY GLASS) FlCAT ON OF BK. a-

DS 6203:4501
30 September 1990

FOREWORD

This technical report covers work performed under Air Force
Contract F33600-87-C-0464, DAPro Project. This contract is
sponsored by the Manufacturing Technology Directorate, Air Force
Systems Command, Wright-Patterson Air Force Base, Ohio. It was
administered under the technical direction of Mr. Bruce A.
Rasmussen, Branch Chief, Integration Technology Division,
Manufacturing Technology Directorate, through Mr. David L. Judson,
Project Manxayr. The Prime Contractor was Integration Technology
Services, Software Programs Division, of the Control Data
Corporation, Dayton, Ohio, under the direction of Mr. W. A.
Osborne. The DAPro Project Manager for Control Data Corporation
was Mr. Jimmy P. Maxwell.

The DAPro project was created to continue the development, test,
and demonstration of the Integrated Information Support System
(IISS) . The IISS technology work comprises enhancements to IISS
software and the establishment and operation of IISS test bed
hardware and communications for developers and users.

The following list names the Control Data Corporation
subcontractors and their contributing activities:

SUBCQNTRACTOR ROLE

Control Data Corporation Responsible for the overall Common
Data Model design development and
implementation, IISS integration and
test, and technology transfer of IISS.

D. Appleton Company Responsible for providing software
information services for the Common
Data Model and IDEFlX integration
methodology.

C NTEK Responsible for defining and testing a
representative integrated system base
in Artificial Intelligence techniques
to establish fitness for use.

zSimpact Corporation Responsible for Communication
development.

Structural Dynamics Responsible for User Interfaces,
Research Corporation Virtual Terminal Interfaceand Network

Transaction Manager design,
development, implementation, and
support.

Ariz-na State University Responsible for test bed operations
and support.

lli1

DS 620344501
30 September 1990

Table of Contents
Page

SECTION 1. SCOPE 1-1
1.1 Identification 1-1
1.2 Functional Summary 1-1

SECTION 2. DOCUMENTS 2-1
2.1 Reference Documents 2-1
2.2 Terms and Abbreviations 2-2

SECTION 3. REQUIREMENTS 3-1
3.1 Computer Program Definition 3-1
3.1.1 System Capacities 3-1
3.1.2 Interface Requirements 3-1
3.1.2.1 Interface Block Diagram 3-2
3.1.2.2 Detailed Interface Definition 3--4
3.2 Detailed Functional Requirements ... 3-6
3.2.1 Language Semantics 3-9
3.2.1.1 Create Application Statement 3-9
3.2.1.2 Create Report Statement 3-9
3.2.1.3 Condition Statement 3-9
3.2.1.4 Page Statement 3-11
3.2.1.5 Exit Statement 3-11
3.2.1.6 Embedded C Code 3-11
3.2.1.7 Set Statement 3-12
3.2.1.8 Signal Statement 3-12
3.2.1.9 Nested Condition Statement 3-12
3.2.1.10 Help Statement 3-12
3.2.1.11 Present Statement 3-12
3.2.1.12 The Call Statement 3-12
3.2.1.13 NDML Statements 3-13
3.2.2 Generate Code Specification 3-14
3.2.2.1 Create Application Statement 3-14
3.2.2.2 Create Report Statement 3-15
3.2.2.3 Condition Statement 3-15
3.2.2.4 Page Statement 3-17
3.2.2.5 Exit Statement 3-17
3.2.2.6 Embedded C Code 3-17
3.2.2.7 Set Statement 3-17
3.2.2.8 Signal Statement 3-17
3.2.2.9 Nested Condition Statement 3-17
3.2.2.10 Help Statement 3-18
3.2.2.11 Present Statement 3-18
3.2.2.12 The Call Statement3-1P
3.2.2.13 NDML Statements 3-'.)

i Acoesslon For

NTIS GRA&I
DTIC TAR

1istrlbution/

Availability Codes
A -1 arid 'or

Dist Special

V0'

DS 620344501
30 September 1990

Table of Contents

Page

3.2.3 Data Structures 3-21
3.3 Performance Requirements 3-23
3.3.1 Programming Methods 3-23
3.3.2 Program Organization 3-23
3.3.3 Modification Consideration 3-24
3.4 Human Performance 3-24
3.5 Database Requirements 3-24
3.5.1 Sources and Types of Input 3-24
3.5.2 Destinations and Types of Outputs . 3-24
3.5.3 Internal Tables and Parameters 3-24
3.6 Adaptation Requirements 3-24
3.7 Government-Furnished Property List .. 3-25

SECTION 4. QUALITY ASSURANCE PROVISIONS 4-1
4.1 Introduction and Definition 4-1
4.2 Computer Programming Test and

Evaluation 4-1
4.2.1 Preliminary Qualification Tests ... 4-1
4.2.2 Formal Qualification Tests 4-1
4.2.3 System Test Program 4-2
4.3 Verification Cross-Reference Matrix . 4-2

SECTION 5. PREPARATION FOR DELIVERY 5-1

SECTION 6. NOTES 6-1

vi

DS 620344501
30 September 1990

List of Illustrations

Figure Title

3-1 Application Generator Interfaces 3-3
3-2 RAP screen 3-5
3-3a Major Data Structures Created by RAP 3-22
3-3b Major Data Structures Created by RAP

(Continued) 3-23

DS 620344501
30 September 1990

SECTION 1

SCOPE

1.1 Identification

This specification establishes the development, test,
qualification, and performance requirements of a computer
program identified as the Rapid Application Generator (RAP).
The RAP is one configuration item of the Integrated Information
Support System (IISS) User Interface (UI).

1.7-Functional- Summary

This Computer Program Configuration Item (CPCI) is used to
facilitate development of screen driven interactive programs
accessing databases through the Common Data Model (CDM).

The major functions of the Rapid Application Generator are:

i Provide a screen driven interface to database
application programs'

24 Provide a screen based means of displaying the
contents of a database

3, Provide a context within which a single application
program can switch between modes of database access:
update, query, deletion, and insertion7 /

4 Allow the application developer to apply human
engineering to the means by which the user dialogues
with the database program.

1-1

DS 620344501
30 September 1990

SECTION 2

DOCUMENTS

2.1 Reference Documents

[1] Structural Dynamics Research Corporation, IISS Terminal
Operator Guide, OM 620344000, 31 May 1988.

[2] Structural Dynamics Research Corporation, IISS Form
Processor User Manual, UM 620344200, 31 May 1988.

[3] Control Data Corporation,System Design Specification, 31
May 1988.

[4] Structural Dynamics Research Corporation, Forms Language
Compiler Development Specification, DS 620344401, 31 May
1988.

[5] Structural Dynamics Research Corporation, Report Writer
Development Specification, DS 620344501, 31 May 1988.

[6] Structural Dynamics Research Corporation, User Interface
Services Development Specification, DS 620344100, 31 May
1988.

[71 Structural Dynamics Research Corporation, Form Processor
Development Specification, DS 620344200, 31 May 1988.

[8] Systran, ICAM Documentation Standards, IDS150120000C, 15
September 1983.

[9] Control Data Corporation, NDML Programmer's Reference
Manual, PRM620341200, 31 May 1988.

2-1

DS 620344501
30 September 1990

2.2 Terms and Abbreviations

Abbreviation id: a user defined abbreviation of a CDM user
view that may be used as a qualifier for a data item
instead of the user view name itself.

Application Definition Language: a subset of the Forms
Definition Language that includes retrieval of database
information and conditional actions. It is used to define
interactive application programs.

Application Interface: (AI), subset of the IISS User
Interface that consists of the callable routines that are
linked with applications that use the Form Processor or
Virtual Terminal. The AI enables applications to be hosted
on computers other than the host of the User Interface.

Application Process: (AP), a cohesive unit of software that
can be initiated as a unit to perform some function or
functions.

Application id: a user defined name which is used as the
root of the file name of the generated application.

Attribute: field characteristic such as blinking,
highlighted, black, etc. and various other combinations.
Background attributes are defined for forms or windows
only. Foreground attributes are defined for items.
Attributes may be permanent, i.e., they remain the same
unless changed by the application program, or they may be
temporary, i.e., they remain in effect until the window is
redisplayed.

Common Data Model: (CDM), IISS subsystem that describes
common data application process formats, form definitions,
etc. of the IISS and includes conceptual schema, external
schemas, internal schemas, and schema transformation
operators.

Computer Program Configuration Item: (CPCI), an aggregation
of computer programs or any of their discrete portions,
which satisfies an end-use function.

Conceptual Schema: (CS), the standard definition used for
all data in the CDM. It is based on IDEFI information
modelling.

2-2

DS 620344501
30 September 1990

Cursor Position: the position of the cursor after any
command is issued.

C code: a user defined sequence of C statements which are
to be included in the generated application.

Data Item: a field of a record in the External Schema.

Device Drivers: (DD), software modules written to handle
I/O for a specific kind of terminal. The modules map
terminal specific commands and data to a neutral format.
Device Drivers are part of the UI Virtual Terminal.

Display List: a list of all the open forms that are
currently being processed by the Form Processor or the
user.

External Schema: (ES), an application's view of the CDM's
conceptual schema.

Field: two dimensional space on a terminal screen.

Field Pointer: indicates the ITEM which contains the
current cursor position.

Field name: a qualified name enclosed in single quotes
which denotes a field in the form processor display list.

Flag id: a user defined name which contains a boolean
valued state indicator which may be used in condition and
set expressions.

Form: structured view which may be imposed on windows or
other forms. A form is composed of fields. These fields
may be defined as forms, items, and windows.

Form Definition: (FD), forms definition language after
compilation. It is read at run time by the Form Processor.

Form Definition Language: (FDL), the language in which
electronic forms are defined.

Form Hierarchy: a graphic representation of the way in
which forms, items and windows are related to their parent
form.

2-3

DS 620344501
30 September 1990

Form Processor: (FP), subset of the IISS User Interface
that consists of a set of callable execution time routines
available to an application program for form processing.

Forms Language Compiler: (FLAN), subset of the FE that
consists of a batch process that accepts a series of forms
definition language statements and produces form definition
files as output.

Form id: a name which denotes a form specified in a FDL
file.

IISS Function Screen: the first screen that is displayed
after logon. It allows the user to specify the function he
wants to access and the device type and device name on
which he is working.

Integrated Information Support System: (IISS), a computing
environment used to investigate, demonstrate, test the
concepts and produce application for information management
and information integration in the context of Aerospace
Manufacturing. The IISS addresses the problems of
integration of data resident on heterogeneous data bases
supported by heterogeneous computers interconnected via a
Local Area Network.

Item: non-decomposable area of a form in which hard-coded
descriptive text may be placed and the only defined areas
where user data may be input/output.

Item name: a qualified name which denotes an item field.

Key id: a user defined name for a function key which is how
the key is referenced within an ADL program.

Logical Device: a conceptual device that identifies a top
lvel window of an application. It is used to distinguish
between multipla applications running simultaneously on a
physical device.

Message: descriptive text which may be returned in the
standard message line on the terminal screen. They are
used to warn of errors or provide other user information.

Message Line: a line on the terminal screen that is used to
display messages.

2-4

DS 620344 nf
30 September 1990

Network Transaction Manager: (NTM), IISS subsystem that
performs the coordination, communication and housekeeping
functions required to integrate the Application Processes
and System Services resident on the various hosts into a
cohesive system.

Neutral Data Manipulation Language: (NDML), the command
language by which the CDM is accessed for the purpose of
extracting, deleting, adding, or modifying data.

Open List: a list of all the forms that are currently open
for an application process.

Operating System: (OS), software supplied with a computer
which allows it to supervise its own operations and manage
access to hardware facilities such as memory and
peripherals.

Page: instance of forms in windows that are created
whenever a form is added to a window.

Pagin9 and Scrolling: a method which allows a form co
contain more data than can be displayed with provisions for
viewing any portion of the data buffer.

Parameter form id: the name of a form which is to be
displayed when the application is started from the IISS
function screen and allows the user to specify run time
values for the application.

Presentation Schema: (PS), may be equivalent to a form. It
is the view presented to the user of the application.

Procedure id: the name of a user supplied or system service
procedure which is to be called by the generated
application.

Qualified Name: the name of a form, item or window preceded
by the hierarchy path so that it is uniquely identified.

Rapid Application Generator: (RAP), part of the Application
Generator that generates source code for interactive
programs based on a language input.

Subform: a form that is used within another form.

2-5

DS 620344501
30 September 1990

Table id: the name of a CDM user view.

User Data: data which is either input by the user or
output by the application programs to items.

User Interface: (UI), IISS subsystem that controls the
user's terminal and interfaces with the rest of the system.
The UI consists of two major subsystems: the User Interface
Development System (UIDS) and the User Interface Management
System (UIMS).

User Interface Management System: (UIMS), the runtime UI.
It consists of the Form Processor, Virtual Terminal,
Application Interface, the User Interface Services and the
Text Editor.

User Interface-Monitor: (UIM), part of the Form Processor
that handles messaging between the NTM and the UI. It also
provides authorization checks and initiates applications.

User Interface Services: (UIS), subset of the IISS User
Interface that consists of a package of routines that aid
users in controlling their environment. It includes
message management, change password, and application
definition services.

User Interface/Virtual Terminal Interface: (UI/VTI),

another name for the User Interface.

User View: a data record in the External Schema.

Window: dynamic area of a terminal screen on which
predefined forms may be placed at run time.

Window Manager: a facility which allows the following to be
manipulated: size and location of windows, the device on
which an application is running, the position of a form
within a window. It is part of the Form Processor.

Window name: a qualified name which denotes a window.

2-6

DS 620344501
30 September 1990

SECTION 3

REQUIREMENTS

3.1 Computer Program Definition

The Rapid Application Generator (RAP) is a compiler which
translates Form Definition Language source files into binary
Form Definition format files and creates source for an
application program which accesses databases via the CDM.

While RAP is normally invoked from the IISS function
screen, another version is available which can be invoked from
the host system. This second version is required so the user may
specify a CDM at compile time.

Applications written prior to version 2.3 will require
translation to the current syntax. A translation utility,
GAPTRAN is used for this purpose. GAPTRAN translates those
applications which are syntactically and semantically correct
for versions prior to 2.3. GAPTRAN is invoked from the host
system and then the user specifies the input and output files.

3.1.1 System Capacities

The RAP is written in C and NDML. It runs on a DEC VAX
minicomputer under the VMS operating system.

3.1.2 Interface Requirements

The RAP may be invoked from the IISS function screen or
from the host system. In either case the user specifies a Forms
Definitions Language (FDL) source file to be compiled. When
invoked from IISS the standard CDM is used. When invoked from
the host system the user must specify the CDM.

The input FDL source file must correspond to the syntax in
Appendix A of [4].

The output consists of binary Form Definition files whose
format is constrained to agree with that expected by the Form
Processor configuration item. The output C file is syntactically
and semantically acceptable to the DIGITAL VAX 11 C compiler.
The output NDML file is syntactically and semantically
acceptable input for the NDML Precompiler configuration item and
the DIGITAL COBOL compiler. Error messages are directed to the
user's terminal.

3-1

DS 620344501
30 September 1990

GAPTRAN is invoked from the host system. The user is
prompted for the name of the file to be translated and the name
of the file to write the translation to. The input to GAPTRAN
must be syntactically and semantically correct for version
2.2.5 RAP. The output will be acceptable to the version 2.3 RAP
configuration item.

3.1.2.1 Interface Block Diagram

The interface block diagram for the RAP is shown in Figure
3-1.

Key: -------- +-----------
IData II Process I

+-------- +------------

+----------------+
MYAPPL.FDL

Source File
+----------------+

V
+----------------- -----------------
Application I CDM

Program --------- + Data

Generator , Dictionary
+--------+------- +--------------

+--

V V V
------------ +---+---+ +--------------
Generated Generated

C F1.FD COBOL

Program Program
+--------+ --------- + +-------------
V V

3-2

DS 620344501
30 September 1990

+----------------- ------------------------

C compiler I I CDM precompiler I
---------------- +----------------------

---------------- +---------------------------

V V V
------- +----------- -------------- ----------------

IPrecompiled I RP

Generated ES/CS --------------

COBOL Procedure Main ISub

IProcedure Procedure
------- +----------- -------------- ----------------

---------------- +---------------------------

V
+----------------------
ICOBOL compilerI

---------------- +---------------------------
V V VV

+-----+----------- ----- +----------- +---------- --- ----------------
I Precompiled ES/CS I RP

MYAPPL.OBJ Generated Procedure --------------

COBOL .OBJ Main ISub

.OBJ .OBJ
+-----+----------- ----------------- ------------ + +----------------

+--------------------------+-------------+---------------------------

--------------------- +----------------------

User Supplied Form Processor

Procedures Procedures
+-------------------+ -------------------- +

---------------- +------------------

V

Linker

+-------+--------------

V V
+~~------------- ----------------- *--+- --------------

F1.FD +-> Application RP <-+ Database

Program Program I
+--------+ *----------------- *----------------- -------------

Figure 3-1. Rapid Application Generator Interfaces

3-3

DS 620344501
30 September 1990

3.1.2.2 Detailed Interface Definition

Rapid Application Generator Interfaces

Form Definition Language

The syntax of the FDL accepted as input by RAP is
documented in Appendix A of [4]. This language is intended to
provide access to all Form Processor functionality. It is also
intended to be a LALR(1) grammar for ease of parsing. A number
of automatic parser generators are available for LALR(1)
grammars, most notably the UNIX utility YACC.

Binary Form File Format

The format is specified in Section 3 of [4].

User Input to RAP

The following figure is the IISS form RAP uses to prompt
the user for an input file.

3-4

DS 620344501
30 September 1990

--

1155 Report Writer Generator Release 2.0

--

4--
Report writer Definition File Name:I

MSG: 10 appIcation

Figure 3-2. RAP screen

3-5

DS 620344501
30 September 1990

The host system invocation of RAP is system dependent. The
user specifies a FDL source file to be compiled, the username
and password of the CDM to be accessed. Error messages are
directed to the user's terminal.

RAP Error Messages

RAP error messages are specified in Section 3 of [4].

Generated C and COBOL Code

The generated C code contains logic for control flow and
Form Processor interactions and interfaces with the generated
COBOL code. It is constrained to be syntactically and
semantically acceptable to the DIGITAL VAX 11 C compiler.

The generated COBOL code contains NDML statements to access
CDM databases and interfaces with the generated C code. It is
constrained to be syntactically and semantically acceptable to
the NDML Precompiler and the DIGITAL VAX COBOL compiler.

When the C code has been compiled and the COBOL code
precompiled and compiled, the modules are linked to create an
application program which runs under IISS.

GAPTRAN Interfaces

The invocation of GAPTRAN is system dependent. The user is
prompted for the name of the FDL file to be translated and the
name of the output file.

3.2 Detailed Functional Requirements

Application dialogues under the Form Processor are based on
the forms or block mode of interaction. In this dialogue the
user is presented with an electronic form and is requested to
supply several data values. Upon entering these values the user
presses a function key and the application processes all entered
values. The cycle repeats with the application displaying
another form for the user. The other major type of application
dialogue is conversational, or tty. In this dialogue the
application prompts the user for each data value.

3-6

DS 620344501
30 September 1990

Applications consist of two parts: a description of the
forms to be displayed on the screen and the control flow to
process the data. Forms are specified using the FDL. This
language specifies locations and sizes of fields on the screen
and is described in Appendix A of [4]. The control flow may be
specified by a computer programming language like FORTRAN,
COBOL, or C. Applications in these languages interact with the
Form Processor by making calls tc procedures which change the
forms diaplayed (e.g. addfrm, rmvpag), put or get data from the
forms (e.g. pdata, gdata) and output the screen to the user and
request input (e.g. outscr, oiscr).

The Application Definition Language (ADL) is a subset of
FDL and may be used to specify the control flow of the
application. This language is designed to eliminate many of the
details normally associated with application specification. It
does this by restricting the domain of applications that can be
specified by:

o having a uniform model of computation for those
applications

o making the application's state information easily
accessible

o using forms
o using NDML

The ADL's restricted domain of applications consists of
that set of applications which employ relation database access
methods and use forms to display and interact with the database.
The database access methods are the data manipulation operators
of selection, insertion, deletion, and modification. ADL
applications assume the data in the database can be used "as is"
without performing complex algorithmic manipulations on it.

ADL has an interactive and a noninteractive model of
computation. The latter is intended to be used primarily as a
report writer. ADL's model of computation is based on the
condition and its actions. A condition is syntactically and
semantically similar to an if statement in a general purpose
language. It tests for a particular computational state and, if
true, the condition's actions are executed. This collection of
activities is referred to by saying the condition is executed.
ADL state information includes such things as function key press
and the value of an item on a form. Actions are commands which
change the state of computation and include such things as
adding a form to the display list and setting an item field to a
value.

3-7

DS 620344501
30 September 1990

State information is divided into that of the Form
Processor and that of the application. Form Processor state
information includes the following items.

o value of an item
o scrollable array index
o display attribute of a field
o which form is displayed in a window
o number of pages in a window
o appears if state
o cursor position
o IISS logon role
o function key pressed
o modification of an item's value

Application state information includes the following items.

o application startup point
o signal flag value
o data read overflows form
o data stream value changes
o empty database query

Actions are commands which alter the state of an
application. Possible actions include:

o output a display
o terminate the application
o embedded C code
o assign a value to an item
o set a flag
o a nested condition
o call a procedure
o display a help form or message
o query a database
o insert a row into a database
o delete a row from a database
o modify a row in a database

3-8

DS 620344501
30 September 1990

3.2.1 Language Semantics

The following paragraphs discuss the language semantics

required.

3.2.1.1 Create Application Statement

The application id is the name of the application and is
used as the root for-the file names of the generated C and COBOL
code and the procedure names for the COBOL module.

The parameter form id is the name of the UIMS parameter
form for this applIcation. This form must also be defined to the
User Interface DataBase in order to complete the definition.

The Keypad clause defines a mapping between a terminal's
function key numbers and the function key names used in Pick
condition expressions. These keypad definitions are in effect
for the duration of the application and override those on the
Create Form statement. A key id may is bound to exactly one
function key but a function key may be bound to multiple
key ids.

The c code clause is any C code which might normally occur
external to a C procedure. The code is placed into the generated
C code after the #include statements and other generated global
variable declarations and just before the main procedure.

The Create Application statement specifies that an
interactive application is to be generated.

3.2.1.2 Create Report Statement

The applicationid, parameter form id and c code have
identical semantics to the Create Application statement.

The Create Report statement specifies that a noninteractive
application is to be generated.

3.2.1.3 Condition Statement

A condition is syntactically and semantically similar to an
if then else statement in a general purpose language. The
condition's boolean expression facilitates the checking of Form
Processor and application state information. When the
condition's expression is tested the condition is said to be
evaluated. If the evaluation is true the condition's actions are
executed in the order they appear in the source file. When the
condition's actions are executed the condition is said to be
executed.

3-9

DS 620344501
30 September 1990

In the interactive model, condition's that have expressions
which refer to Form Processor state information are evaluated
once per function key press, in the order they are listed in the
source file and at most one is executed. In either model,
conditions which refer to application state information are
evaluated during the appropriate action and if true, the
condition is executed and flow of control continues with the
first action after the one that tripped the condition. In the
noninteractive model, all conditions should refer to one of the
application state information conditions: Startup, Overflow,
Change, Empty, or flag id. This is because there are no function
key presses and the application is entirely driven by the data
read from a database. When a condition is tripped the
application state information is set to false prior to executing
the condition.

Conditions which refer to the Startup condition are
evaluated once at application startup. Conditions which refer to
the Overflow or Change conditions are evaluated during an
appropriate Present action. If tripped, the Present action
terminates and the condition is executed. When the condition
terminates the flow of control continues with the first action
after the Present. A condition which refers to the Empty
condition is evaluated following the corresponding Select
action. If tripped the condition is executed. When the condition
terminates the flow of control continues with the first action
after the Select. A condition which refers to a flag id is
evaluated following the corresponding Signal action. If tripped,
the condition is executed. When the condition terminates the
flow of control continues with the first action after the
Signal.

Condition Expressions

The semantics of expressions are similar to that of Value
and Appears If clauses in the Form Drocessor. This section
describes the application state conditions.

The Pick condition is true if the specified function key
has been pressed. If the key was defined on a form, it also
checks that the form the key was defined on is displayed. The
Startup cohdition is true when the application starts. The
Overflow condition is true if the number of rows selected from a
database exceeds the number of array elements allotted on the
target form. The Change condition is true if a column's value
changes in the sequence of rows selected from a database. The
Overflow and Change conditions occur during the Present action.
The Empty condition is true when a Select action returns no
rows. A flag id is true if it has been set by the Signal action.

3-10

DS 620344501
30 September 1990

Form Keypad Definitions

Form Keypad definitions are part of the Create Form
statement like Prompts and Background clauses. The Keypad clause
defines a mapping between a terminal's function keys,
represented by nonnegative integers and the function key names
used in the Pick condition. Keypad definitions are placed on
forms which are not subforms. The keypad bindings are in effect
while the form is the top page in the window. Keypad definitions
on the Create Form statement are overridded by those on the
Create Application statement. A keyid is bound to exactly one
function key but a function key may be bound to more than one
key id.

Qualified Names

Qualified names are used to refer to Form Processor fields.
They are enclosed in single quotes. Qualified names may refer
only to those fields contained in the source file. Forms
referenced in qualified names must also be presented at some
point in the application.

Two symbolic array indices are available. The use of a
symbolic index implies a control flow struicture loop and at
application run time the symbolic index is replaced with an
actual value. The part of the qualified name which prefixes a
symbolic index has scope from that condition or action to all
nested conditions and actions inclusive. Scope rules are based
on an upper case comparison of the symbolic index prefix. The
syntax for the universal (for all) quantifier index is a star.
This means all elements of the array will be used sequentially
in the condition or action. The for each quantifier index is a
zero. This symbolic index is normally used in a qualified name
which is the target of a Select action, or a condition or action
which are nested in the Select.

3.2.1.4 Page Statement

The Page action outputs the current display list to the
current logical device.

3.2.1.5 Exit Statement

The Exit action terminates the application.

3.2.1.6 Embedded C Code

This allows the user to reference the generated internal
data structures and perform specialized computations. Only
qualified name internal data structures should be referenced to
ensure the integrity of the application.

3-11

DS 620344501
30 September 1990

3.2.1.7 Set Statement

The Set action assigns the value of the right hand side to
the item field on the left.

3.2.1.8 Signal Statement

The Signal action allows the user to set or reset the state
of a flag id. Any top level conditions which refer to the
flagid will be evaluated.

3.2.1.9 Nested Condition Statement

Nested conaitions differ from top level conditions in that
they are evaluated if their parent condition or action is
executed. They are evaluated in the order they appear in the
source file. References to application state functions, Startup,
Overflow, Change, Empty and to flagid does not change the order
of evaluation.

3.2.1.10 Help Statement

The Help action is used to display a message in the message
line or display a help form.

3.2.1.11 Present Statement

The purpose of the Present action i to replace the current
or top form in a window. If there is no furm in the window the
form is added. A form may be Presented in exactly one window.

The purpose of the Display action is to add a form to the
top of a window. A form may be Displayed in exactly one window.

The purpose of the Redisplay action is to remove forms from
a window until the specified form is the current torm in the
window. A form may be Redisplayed in exactly one window.

A secondary purpose of a Present action is to initiate or
resume reading data from selects which target to the presented
form or one of its subforms. Data reading may be supressed by
using the Noselect option.

3.2.1.12 The Call Statement

The purpose of the call action is to allow the application
to make calls to Form Processor procedures or other system
services to perform specialized computations. The call action

3-12

DS 620344501
30 September 1990

invokes the procedure procedure id. The arguments are passed by
reference. Arguments may be a string, integer, real or a
qualified name of an item. Items default to data type character.
Items may be coerced to an integer or real data type by using
the type modifier Integer or Real. The character string
representing t-he qualified name of the item itself will be
passed to the procedure if the type modifier Path is used.

3.2.1.13 NDML Statements

NDML statements are similar to those of the CDM precompiler
with provisions for referencing item fields. Item fields replace
references to local variables. Error checking is limited to
syntax and the existence of referenced tables and columns.

The Select Statement

The semantics of the Select action are similar to those of
NDML selects. This section will describe those aspects which
differ. Select describes a mappinq from tables and columns to
item fields. The From clause specifies which tables are
involved. The Where clause specifies which rows are to be
retrieved. Operands may be columns, strings, integers, real
numbers or item fields. The Order By clause specifies the order
in .,hich the rows are to be retrieved.

The Select action establishes which data are to be read. It
d(-es not read the data nor are subactions executed until the
data are read during a Present action. If reading is suspended
due to the occurience of an Overfiow or Change condition another
Present action will continue reading the data.

The Nodup Clause

,The Nodup clause is part of an Item field on a form, like
the size and location clauses. The item with the Nodup clause is
the target of a Select action. In a sequence of rows selected
from a database if the value of a column in one row is the same
the previous row's, the item's value will be blanks. The use of
the Nodup clause assumes the rows have been ordered by the
column which targets the item.

The Picture Clause

The Picture clause is a part of the Domain clause of an
Item field on a form, like the Left and Must Enter clauses. The
IC-e w.ith the Picture clause is the target of a Select action.

3-13

DS 620344501
30 September 1990

The string is a COBOL PICTURE clause which describes how the
data from the selected column is to be formatted. The Picture
string must describe a data type which is character based and
compatible with the External Schema data type of the source
column. The Picture string may not contain a repeat
specification.

The Insert Statement

The semantics of the Insert action are similar to those of
NDML inserts. The Insert describes a mapping of values to a
table and its columns.

The Modify Statement

The semantics of the Modify action are similar to those of
NDML inserts. The Modify describes a mapping of values to a
table and its columns.

The Delete Statement

The semantics of the Delete action are similar to those of
NDML inserts. The Delete describes which rows in a table are to
be removed.

3.2.2 Generate Code Specification

Unless otherwise specified the generated code is in C.

3.2.2.1 Create Application Statement

The application id is used as the root for the file names
of the generated C and COBOL code and the procedure names for
the COBOL module. Under the VMS operating system the C file will
have the file extension .C and the COBOL code .PRC.

The c code clause is placed into the generated C code after
the #include statements and other generated global variable
declarations and just before the main procedure.

3-14

DS 620344501
30 September 1990

The Create Application statement specifies that an
interactive application is to be generated. The interactive
model begins by executing a condition with a Startup function.
This condition's actions should display the first form and
possibly assign values to some item fields or select some data
from a database. Then a loop is started which contains a call to
the Form Processor procedure OISCR to output and input the
screen. Next, within the loop are a number of conditions. These
conditions sequentially test the state information until a match
is found and then the condition is executed. At most one
condition is executed per iteration. The loop repeats until an
Exit action is encountered at which time the application
terminates.

3.2.2.2 Create Report Statement

The c code has identical semantics to the Create
Application statement.

The Create Report statement specifies that a noninteractive
application is to be generated. The noninteractive model begins
with a condition which contains the Startup function. The
initial actions will include a Select action to establish which
data are to be read from the database and a Present action to
display a form and start reading from the database. Since there
is no user interaction with the application, conditions are
checked in a different manner than in the interactive model.
While data are being read, conditions are checked which
determine if one of the application states has occured (such as
Overflow, Change and Empty). When these conditions are executed
they typically display the screen (using the Page action) and
start reading another screenful of data using another Present
action. When all actions have finished executing and no more
conditions are true then the application terminates.

3.2.2.3 Condition Statement

Each condition is represented in the generated C code by a
procedure of the name condXXX where XXX is a number. The Form
Processor procedure EVLINT is used to evaluate the condition's
expression. All Form Processor state information can be handled
directly by this procedure. Application state information is
contained in the boolean array func[XXX] where XXX is a number.
The current truth value is inserted in the condition expression
prior to the call to EVLINT. If the condition is tripped the
func[XXXj truth value is reset immediately after the call and
before the actions are executed.

3-15

DS 620344501
30 September 1990

Each action is represented in the generated C code. These
actions are contained inline with the condXXX procedure. Actio'Is
are generated in the order they appear in the source file.

Condition Expressions

In the generated code the expression is placed in a
character string. At application runtime the values representing
application state information are inserted in the string using
the C function sprintf. The result is evaluated using the Form
Processor procedure EVLINT.

Form Keypad Definitions

In the generated code the variable fldno[XXX] keeps track
of which forms are currently the top page in their windows. This
variable is modified when a Present action occurs.

Qualified Names

At compilation time, RAG constructs a psuedo display list
to verify that qualified names will exist at run time. In the
generated code for the symbolic indices, the variable indx[XXX],
where XXX is a number contains the actual index value. The
variable inmx[XXX] contains the maximum number of elements in
the array. This maxinum number is determined by calling the Form
Processor procedure NUMELM. A C for loop contains all conditions
and actions which are in the scope of the qualified name using
the symbolic array index.

At application runtime the index values are substituted
into qualified names containing the symbolic array index using
the C procedure sprintf. In general all the qualified names in
an action must refer to fields which are on the display list of
the current logical device. The exception to this are qualified
names in the Select part of a Select action. These qualified
names must be on the display list when the form they are on is
Presented. These qualified names may also be in the Where clause
of nested Selects.

Data structures which hold values for item fields are
named: XXX1.XXX2... XXXn. Where XXX1 is the name of a Presented
form or a form which is an open ended array. XXXi is further
qualification of the C data structure. The internal data
structures do not necessarily have the current field values as
they are updated following a Set or Present action only.

3-16

DS 620344501
30 September 1990

3.2.2.4 Page Statement

In the generated code the PAGENO item field on the form
PSCREN is incremented with the Form Processor procedure EVLINT
and the screen is output by calling OUTSCR.

3.2.2.5 Exit Statement

In the generated code the Form Processor procedure TERMFP
is called, and the NTM service TRMNAT or the CDM procedure
TRMDML if there are NDML statements.

3.2.2.6 Embedded C Code

In the generated code the C source code between the '%(1
and '%)' is copied as an action. The C code may be any
statements that would normally appear inside the control flow
statements of a procedure. The embedded C code is not checked
for syntax or semantics. The #line preprocessor statement is
generated so C compile errors refer to lines in the ADL source
file.

3.2.2.7 Set Statement

In the generated code the right hand side is evaluated by
calling the Form Processor procedure EVLSTR. The internal data
structure which represents the target item field is updated. If
the qualified name references arrays, the internal data
structure element indexed by nonsymbolic zero is updated.

3.2.2.8 Signal Statement

In the generated code the flagid is set to true (or false
if the Not option is specified). The flag id is internally
represented by the boolean array func[XXX] and its value is set
according to the Not option. The XXX is an index to the func
array for the flag id. The conditions are evaluated by calling
the condXXX procedure generated for conditions.

3.2.2.9 Nested Condition Statement

In the generated code nested conditions are generated
inline with their parent condition's condXXX procedure. The
condition's expression is evaluated using the Form Processor
function EVLINT. If the expression is true, references to any
application state information causes the corresponding flag to
be reset and then the actions are executed.

3-17

DS 620344501
30 September 1990

3.2.2.10 Help Statement

In the generated code the help string format uses the For-n
Processor function PMSGLS to display the string in the message
line. The help form id format uses the Form Processor function
ADDFRM to add the form id to the window SCREEN on the form
PSCREN. Next, is a call to OISCR and when the user presses an
application function key, a call is made to RMVPAG to remove
form id from the window.

3.2.2.11 Present Statement

In the generated code the Present action calls the Form
Processor procedure RMVPAG to remove the top page in the window
window name (or SCREEN if unspecified) and then ADDFRM to put
the form form id in the window.

In the generated code the Display action calls the Form
Processor procedure ADDFRM to put the form form id in the window
window-name (or SCREEN if unpsecified).

In the generated code the Redisplay action repeatedly calls
GPAGE to determine what pages, if any, must be removed from the
window window name (or SCREEN if unspecified) so the form
form id will be the current form in the window. If pages are to
be removed then RMVPAG is called to remove them. If the form
formid is not found then all pages are removed from the window.

In the generated code if there is a select which targets to
an item on a form, or one of its subforms, a call is made to the
procedure xXXX, where XXX is the name of the presented form.
This procedure calls a selXXX procedure, where XXX is the number
of the select action. The selXXX procedure is reponsible for
reading the data and is specified in section 3.2.2.13. To
determine which was the last select to map to this form the
selXXX procedure is called through the psno[XXX] variable. When
the form is displayed and the xXXX procedure returns the
internal data structure representing the form is updated by
calling the Form Processor procedure GDATA. The Noselect option
suppresses the generation of the call to xXXX. The variable
fldno[XXX] is updated to indicate the form is currently the top
page in its window and so updates the form/function key
bindings.

3.2.2.12 The Call Statement

In the generated code the Form Processor procedure GDATA iL

3-18

DS 620344501
30 September 1990

used to obtain the values of the items. The procedure PDATA is
used to place any modified values back into the items. Integer
or real variables are generated for literal integers or reals or
for items which are coerced to those types.

3.2.2.13 NDML Statements

NDML statements are similar to those of the CDM precompiler
with provisions for referencing item fields. In the generated C
code each NDML statement is represented by a procedure named
sqlXXX, where XXX is a number. The C code is responsible for
retrieving data from the forms and passing it to the COBOL code.

In the generated COBOL code each NDML statement is
represented by a procedure named application idXXX, where XXX is
a number. The COBOL code contains the NDML statement in a form
to be precompiled by the CDM precompiler.

The Select Statement

In the generated code the C procedures sqlXXX, selXXX,
getdbXXX and putdbXXX and the COBOL procedure application idXXX
are generated. At the time the application is run sqlXXX and
application idXXX create a temporary file, using putdbXXX, with
the results of the select statement. selXXX reads the data from
the file using getdbXXX and moves it to the item fields on the
form.

In sqlXXX, the Form Processor procedure GDATA is used to
obtain the values of item fields, if any, referenced in the
where clause. If the select has nested selects then the values
of item fields used in their where clauses are also obtained.
These values are stored in a data structure named
"whrstruct.whrXXX.YYY", where XXX is the number of the select
and YYY is the name of the item field. Next sqlXXX calls the
precompiled module application idXXX. The select is performed
and for each row retrieved putdbXXX is called. The results are
stored in a temporary file. sqlXXX also checks for the Empty
condition function, sets the flag func[YYY] and calls the
condition condZZZ which implements this function.

In selXXX each row is read using getdbXXX. Each column
retrieved is in a data structure named dbrXXX.YYY, where XXX is
the number of the select and YYY is the name of the target item
field. The data are placed in the item fields by calling PDATA.
se!XXX also checks for Overflow and Change condition functions,

3-19

DS 620344501
30 September 1990

sets the flag func[YYY] and calls the condition condZZZ which
implement these functions. If there are subactions they are
generated inline to the procedure selXXX and are executed for
each row read.

The Nodup Clause

In the generated code for each Nodup clause, a variable
named chgXXX is generated, where XXX is a number. In the
procedure sqlXXX the variable is initialized to blanks. In the
procedure selXXX the variable is checked against the current
value read and if different the value is put in the item field
as normal. Next the variable is updated with the current value.

The Picture Clause

In the generated COBOL code the Picture string is used as
the declaration for the variable with receives the selected
External Schema column value.

The Insert Statement

In the generated code an Insert action is represented by
the procedure sqlXXX, where XXX is the number of the insert. The
generated COBOL procedure is application idXXX. The procedure
sqlXXX obtains the values of any item fields referenced by
calling the Form Processor procedure GDATA and places the value
in the data structure dbrXXX.YYY, where XXX is the number of the
insert and YYY is the name of the item field. Next, the
procedure application idXXX is invoked.

The Modify Statement

in the generated code the Modify action is represented by
the procedure sqlXXX, where XXX is the number of the modify. The
generated COBOL procedure is application idXXX. The procedure
sqlXXX obtains the values of any item fields referenced in the

3-20

DS 620344501
30 September 1990

Set clause by calling the Form Processor procedure GDATA and
placing the value in the data structure dbrXXX.YYY, where XXX is
the number of the insert and YYY is the name of the item field.
Any item fields referenced in the Where clause are obtained
using GDATA and are placed in the data structure
whrstruct.whrXXX.YYY. Next, the procedure application idXXX is
invoked.

The Delete Statement

In the generated code the Delete action is represented by
the procedure sqlXXX, where XXX is the number of the delete. The
generated COBOL procedure is applicationidXXX. The procedure
sqlXXX obtains the values of any item fields referenced in the
Where clause by calling the Form Processor procedure GDATA and
placing the value in the data structure whrstruct.whrXXX.YYY.
Next, the procedure application idXXX is invoked.

3.2.3 Data Structures

Figures 3-3a and 3-3b show the major data structures
created by RAP in generating the application. The data structure
FIELD is created by modules specific to the FLAN CPCI and are
illustrated in [A]. Pointers not pointing to anything point to
another instance of the data structure.

3-21

DS 620344501
30 September 1990

ACTLST PROCLST
-------------- +-------------

I nxtact +-> I nxtpro +
+------------- --------------

I acttyp I Istring I
+--------------- - -- - -

I selptr +-> SELECT I integerI
+-------------- -- - - - -

I insptr +-> INSERT Idouble I
+--------------- - -- - -

I modptr +-> MODIFY I fid +
±-------------- -- - - - -

I delptr +-> DELETE Itype I
-------------- +-------------

I procist +-> PROCLST
- - - - - - -

SELECT INSERT
+------------ ------------

alisel +--> Iallins +->

colist +--> COLLST Itbllst +-> TBLLST
±------------ +------------

tbllst +--> TBLLST Icolist +-> COLLST
+------------ ------------- +------------

selexp +--> SELEXP Inxtcol +->
±-4 ----------- +------------

whrexp ±---> WHREXP I esdtyp +-> ESDTYP

ordist +--> ORDLST I pred +-> PREDOPND
-+------------------4- ------------- +------------

Inxtord +--> I fid +-
+------------ -------------

Ifid +--> FIELD Istr I
+------------ -----------

Iescityp +--> ESDTYPI u I
------------ +------------ -------------

I nxtesd +--> I escityp i-
+------------ +------------

Icolnam
type
----- ----------

Figure 3-3a. Major Data Structures Created By RAP

3-22

DS 620344501
30 September 1990

MODIFY DELETE
+---------- ----------

allmod +--> I alldel +-->
------------- +------------

tbllst +--> TBLLST I tbllst +--> TBLLST
+------------ ------------- +------------

collst +--> COLLST I whrexp +--> WHREXP I nxttbl +-->
---------- ---------- ----------+

I whrexp +--> WHREXP I tbinam I
+---------- ---------- ----------+

I whrexp +--> I esdtyp +-->
---------- ----------+

I pred +--> PREDOPND

I type +-->
+------------

SELEXP
+----------+
1 selexp +-->

select
-+

type _

Figure 3-3b. Major Data Structures Created by RAP (Continued)

3.3 Performance Requirements

The following paragraphs discuss the RAP performance
requirements.

3.3.1 Proqrming Methods

The RAP is written in C and NDML. A number of existing Form
Processor and FLAN modules are used as the RAP shares some
internal data structures with them. Generated applications are
compiled using the C compiler, the NDML Precompiler, the COBOL
compiler and then linked to create executable application.

3.3.2 Program Organization

RAP uses the callable interface to FLAN to parse the source
input and create the data structures. The NDML module is used to
verify the existence of tables and columns referenced in the
IID-I statements. Separate modules are used to generate the
appLication's data structures, the control flow for

3-23

DS 620344501
30 September 1990

interactive/noninteractive applications, the conditions and

actions, and the NDML statements.

3.3.3 Modification Consideration

The use of existing Form Processor and FLAN modules ensures
that changes made to FP data structures and procedures will
require few changes be made to RAP's procedures.

3.4 Human Performance

Not applicable.

3.5 Data Base Requirements

The RAP accesses the CDM data dictionary information to
verify the existence of tables and columns referenced in NDML
statements and to generate application code for the External
Schemas.

3.5.1 Sources and Types of Input

The RAP accesses the CDM user view: VIEW META DATA. It
references the columns: DIID, ESTYPE, ESSIZE, and ESND.

3.5.2 Destinations and Types of Output

The generated code is returned to the External Schemas.
COBOL, C, and FORTRAN codes are generated.

3.5.3 Internal Tables and Parameters

RAP shares internal data structures with the Form Processor
and FLAN modules.

3.6 Adaptation Requirements

The following paragraphs define the program adaption
requirements.

3-24

DS 620344501
30 September 1990

Portability

In order to ensure generated code portability, the
generated C and COBOL code must satisfy the following
constraints:

o The C code will include the ANSI C header <string.h>.
o The C code will not reference freed storage.
o The COBOL code will use only double quotes to specify

character strings.
o The COBOL code will not contain tabs.
o Phe COBOL instruction EXIT PROGRAM will be within a separate

paragraph.

In addition to these specific constraints, any future
modifications to the code generator should ensure that the
generated C code adheres to the current version of the IISS C
Ccding Standards.

Code Identification

The generated C code contains a comment line at the
LbeuinninQ identifying the name of the generated COBOL program.
Thc format of this comment is:

THIS FILE IS ASSOCIATED WITH filename.PRC

it 4enerated on a VAX/VMS host and

THIS FILE IS ASSOCIATED WITH PRC(member)

if generated on an IBM host.

Government-Furnished Property List

Not applicable.

3-25

DS 620344501
30 September 1990

SECTION 4

QUALITY ASSURANCE PROVISIONS

4.1 Introduction and Definition

"Testing" is a systematic process that may be preplanned
and explicitly stated. Test techniques and procedures may be
defined in advance and a sequence of test steps may be
specified. "Debugging" is the process of isolation and
correction of the cause cf an error.

"Antibugging" is defined as the philosophy of writing
programs in such a way as to make bugs less likely to occur and
when they do occur, to make them more noticeable to the
programmer and the user. In other words, as much error checking
as is practical and possible in each routine should be
performed.

4.2 Computer Programing Test and Evaluation

The quality assurance provisions for test consist of the
normal testing techniques that are accomplished during the
construction process. These tests include design and code
walk-throughs, unit testing, and integration testing.

4.2.1 Preliminary Qualification Tests

Preliminary qualification tests consist of design and code
walk-throughs. These tests are performed by the design team.
Structured design, design walk-through and the incorporation of
"antibugging" facilitate this testing by exposing and addressing
problem areas before they become coded "bugs".

Development and testing are done on the Air Force VAX.

4.2.2 Formal Qualification Tests

The first formal tests involve unit testing. These tests
also are performed by the design team. These tests verify the
functionality of each RAP routine. Each function is tested
separately, then the entire subsystem is tested as a unit.

4-1

DS 620344501
30 September 1990

4.2.3 System Test Program

The integration testing entails generating from an ADL
definition an application comprising C and COBOL code, compiling
the C portion, precompiling the COBOL portion with the CDM
Precompiler, compiling the resultant COBOL program, installing
the application on the IISS UIS, and producing an interactive
database application using a CDM data base via the NTM.

4.3 Verification Cross-Reference Matrix

A cross-reference matrix, or similar process, to assure all
dependencies of each routine upon the other have been verified
-,,ill be established and included in the unit test plan.

4-2

DS 620344501
30 September 1990

SECTION 5

PREPARATION FOR DELIVERY

The implementation site for the constructed software is the
ICAM Integrated Information Support System (IISS) Test Bed site
located at Arizona State University, Tempe, Arizona. The
software associated with each CPCI release is delivered on a
media which is compatible with the IISS Test Bed. The release
is clearly identified and includes instructions on procedures to
be followed for installation of the release. Integration with
the other IISS CPCI's is done at the IISS Test Bed on a
scheduled basis.

5-1

.... M||

DS 620344501
30 September 1990

SECTION 6

NOTES

Please refer to the Software Availability Bulletin, Volume
III, Part 16, CI# SAB620326000, for current IISS software and
documentation availability.

